
Master symmetries and point-particle representation of solitons

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1987 J. Phys. A: Math. Gen. 20 3619

(http://iopscience.iop.org/0305-4470/20/12/016)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 31/05/2010 at 10:24

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/20/12
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J.  Phys. A: Math. Gen. 20 (1987) 3619-3630. Printed in the U K  

Master symmetries and point-particle representation 
of solitons 

M Biaszak 
Institute of Physics, A Mickiewicz University, Grunwaldzka 6, 60-780 Poznan, Poland 

Received 11 August 1986, in final form 30 December 1986 

Abstract. Hierarchies of soliton equations generated by an appropriate recursion operator 
are considered. N non-interacting Galilean-like point particles are connected with an 
N-soliton solution of an arbitrary equation from the hierarchy. The method of finding the 
particle representation o f  solitons is closely related to eigenstates of the recursion operator 
and master symmetries of the soliton equations. 

1. Introduction 

In this paper we study the non-linear evolution equations U, = K ( u )  which have a 
recursion operator 4 (Olover 1977). It is well known that the pair ( K ,  4 )  generates 
an infinite hierarchy of evolution equations which are exactly solvable through the 
inverse scattering transformation ( IST). The most interesting invariant solutions of 
these equations are so-called N-soliton solutions and  they are the subject of our 
consideration. Two questions are of interest: whether it is possible to decompose an  
N-soliton solution into the sum of N interacting extended particles and  whether it is 
possible to connect a point particle with each extended particle. The affirmative answer 
to the first question will be considered in a separate paper, where the ith interacting 
soliton is connected with the ith eigenstate of the recursion operator 4 and a detailed 
analysis of the shape deformation of each soliton due to the interaction is performed. 
In  this paper, we present a systematic way of connecting a free point particle with 
each interacting soliton and we analyse its properties. 

The concept of master symmetries (Fuchssteiner 1983) plays a crucial role in our 
considerations. Master symmetries are in correspondence with the symmetries of a 
given flow. We show that, for a wide class of soliton equations which have a recursion 
operator, the master symmetries can only be of degree zero and one. A homomorphism 
between the Lie algebra of functionals and the Lie algebra of vector fields defines 
suitable master symmetries in the space of 0-forms. These master symmetries are in 
correspondence with the invariant functionals of a given flow. Now, the decomposition 
of an N-soliton solution in the basis of N interacting solitons induces the decomposition 
of master symmetries in the space of 0-forms in the basis of suitable functionals. The 
map of basic functionals into their values defines a basis in R’& phase space of 
N-soliton particles endowed with the standard symplectic structure of point particles. 
These particles move with the speeds of non-interacting solitons and are similar to the 
conimon Galilean particle. The only difference lies in the fact that their masses are 
constants of motion. We shall call these particles soliton point particles. Explicit 
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calculations have been performed for Korteweg-de Vries (Kdv), Savada-Kotera ( SK), 
Boussinesq and modified Korteweg-de Vries (MKdv) hierarchies, but the model may 
be also applied to other hierarchies, for example Gardner, modified Boussinesq, 
Kupershmidt or complex-coupled Kdv ones. We have also shown the connection 
between soliton particle variables and action-angle variables of IST. Moreover, we 
would like to point out that all results have been obtained independently of those 
obtained by the IST method and are based on the symmetry approach only. 

2. Preliminaries and basic ideas 

We consider the evolution equation of the form 

U, = K ( u )  (2.1) 
where U = ( U , ,  . . . , u , ) ~  is a vector of field functions from some C" manifold M 
depending upon one space variable x and the time variable t ,  and K = ( K ,  , . . . , K,,)T 
is a C" vector field on M ,  smoothly dependent on the fields U , , ,  U,?, . . . , w i t h  

In  general, we shall denote C"(r, s)  tensor fields r times contravariant and s times 
covariant by ( r ,  s). Each tensor ( r ,  s )  may be associated with a map. In  our further 
considerations, we shall identify the tensor fields with the corresponding mapping and 
we shall assume that all maps considered are differentiable according to the definition 
of Gateaux. Moreover, a (0,O) tensor shall be identified with 0-form, a (0, 1) tensor 
with 1-form and a skew-symmetric (0, k )  tensor with a k-form. 

u , ~  = a h u , / a x h .  

A tensor field G, which satisfies the relation 

aGlat + LKG = 0 (2.2) 
where L K  is the Lie derivative in the direction of a vector field K ,  is called a tensor 
symmetry of (2.1) (Eikelder 1986). The (1,O) tensor symmetry U is called the symmetry 
generator of (2.1) and the flow U, = '+(U) is the symmetry of (2.1). The ( 1 , l )  tensor 
symmetry 4 is called the recursion operator and its characteristic feature is that acting 
on one symmetry generator it produces another one. The other tensor symmetries 
connected with the flow (2.1) are: the (0, 1) tensor symmetry y called conserved 
covariant, the (2,O) tensor symmetry 8 called the Noether operator and the (0 ,2 )  
tensor symmetry J called the inverse Noether operator (Oevel and Fokas 1984). For 
autonomous flows, which we shall concentrate on in this paper, the operators 4, e 
and J are time independent, so they satisfy the equation LKG = 0. 

Let us endow the space of ( 1 , O )  vector fields with a Lie algebra structure 2 through 
the Lie commutator given by the relation 

[ u ( u ) ,  w ( u ) l =  u ' ( u ) [ w ( u ) l -  w ' ( u ) [ 4 u ) l  (2.3) 
where u ' ( u ) [ w ( u ) ]  means the directional derivative of U at the point U in the direction 
w. If equation (2.1) is invariant under space and  time translations and has a recursion 
operator which is hereditary (Fuchssteiner 1981 1, then all time-independent symmetries 
are of the form 

U, = 4 "'Ki  j = 1 , 2  

K A = u ,  K : =  K m =0 ,  il,. . . (2.4) 
and the set { K !,,, K i }  = K 
algebra of 9. Two series of symmetries appear if K # @,. 

of symmetry generators constitutes an Abelian Lie sub- 
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Defining a symplectic structure in M through the symplectic operator J : (1,O) + 

(0, 1) and its inverse 8, called an  implectic operator, where J is a closed 2-form, the 
evolution equation (2.1) may be written in Hamiltonian form: 

U ,  = 8 6 H / 6 u .  (2.5) 

H E  (0,O) is the Hamiltonian functional, 8 E (2,O) is the implectic Noether operator 
and SH/Gu = grad H = y E ( 0 , l )  is the gradient covector. Moreover, in the space of 
0-forms the structure of the Lie algebra 9 may be defined through the Poisson bracket 

{ F , G } , , = ( E , 8 S G ) = ~ '  (") 8-dx. 6G 
6u su --x 6u 6u 

The map 

For a given 7 E 2, a linear map ad : YI + Y defined as 

= 86 /6u  : (0,O) + (1,O) is a Lie algebra homomorphism of 9 into 2. 
Let 2 be an  arbitrary Lie algebra on (1,O) vector fields and zl a Lie subalgebra. 

ad T ( A )  = $A = [T, A ]  A E T l  (2.7) 
is called an  inner derivation. If an inner derivation maps 2, onto TI,  then 7 is called 
an  Y ,  master symmetry of degree 1. T, is called the 2, master symmetry of degree n 
if for all A E YI ad 7, , (A)  is the TI master symmetry of degree n - 1. In the same way, 
we may define master symmetries 6, in the Lie algebra 9 of functionals, where the 
inner derivation is defined by a Poisson bracket (2.6) instead of the Lie product (2.3). 

Let the commutant K' of K ( u ) ,  i.e. K L = { A :  [ A ,  K ] = O } ,  form an  Abelian Lie 
algebra 2, = K l .  Following Fuchssteiner (1983), for the (m,j) equation from (2.4) 

t'  
I = O  1 .  CrLm*')( t )  = ( kL)'Tn (2.8) 

and 

are its time-dependent symmetry generator and constant of motion, respectively. 
An alternative way of determining the symmetry generators of (2.1) uses the 

admissible Lie-Backlund (LB) operators (lbragimov and Anderson 1977). As was 
shown by Fokas (1980), their generators are equivalent to the symmetry generators of 
(2.1). On the other hand, the admissible L B  operators and their generators are just 
generalisations of the well known Lie operators and geometrical symmetries connected 
with the invariance of (2.1) under a suitable point transformation. Hence, the infinite 
algebra of all symmetry generators of (2.1) is known as the Lie-Backlund algebra. 

As we shall show in the next section, a self-map in L B  algebra is defined with the 
help of a recursion operator or  a suitable master symmetry. 

3. Master symmetries of evolution equations with a hereditary recursion operator 

3.1. General considerations 

Let us consider the non-linear evolution equation (2.1) which has a hereditary recursion 
operator 4. Then K' is an  Abelian Lie subalgebra and 4 satisfies the condition 

(3.1) 4 i m  ( A )  = 4 [Km 9 A I  = [ K m  >  AI = k m  ( 4 ~ )  
If T , , ~  is the simplest K' master symmetry of degree n, then T , , , ~  = 4 ' ~ , + ~  is the K L  

K , E K ~ ,  A E Y .  
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master symmetry of degree n as well, since 

where we have used the property (3.1). It is easy to show that a recursion operator 
generates all K' master symmetries of degree n from the simplest one, T , , ~ .  Hence, 
the problem of finding all symmetries and  conserved quantities for a given evolution 
equation is confined to the problem of finding r,,, master symmetries. 

According to (2.8), master symmetries of degree 0 are equal to time-independent 
symmetry generators K ,  = r,,, so we begin by finding a rl,,. We may d o  so by finding 
the simplest geometrical time-dependent symmetry generator whose time-independent 
part is equal to r,,, .  Now we shall try to find a r2,, master symmetry. 

Lemma 1. Let us consider the evolution equation (2.1) which is translationally invariant 
and has a hereditary recursion operator. The necessary and  sufficient condition for 
the existence of a K master symmetry of degree 2 is k A , -  rl , where A, is obtained 
from the equation [U , ,  A,] = T ~ , , .  

ROO$ The sufficiency is obvious in the light of theorem 1 from Fuchssteiner (1983) 
and relations (3.1) and (3.2). Now we assume the existence of a set r2. For an arbitrary 
A E  r2 there is a T ~ , "  such that 

[ U , , A ] - ~ ~ , ~ = ~ ~ ~ I , ~ = ~ " [ U , , A O I = [ U , ,  4"hoI. (3.3) 

This means that A = constant x 4 " A ,  and, according to (3.2), A, E r2. 
If there exists a K L  master symmetry of degree 2, then there exists a K -  master 

symmetry of an arbitrary degree n and r,,,, can be generated recursively by the relation 
T,,+~,,= [ T , , ~ ,  A,] or T , , + ~ , ~ =  [ T , , ~ ,  A,] if the first commutator cancels. 

Using lemma 1, one can find that for the best known soliton hierarchies generated by 
the recursion hereditary operator there are no K master symmetries of degree 2 or 
higher. So it seems to be a general property rather than an accidental one. 

Let us introduce the commutator of T ~ , ~ ~ :  

[K',, 71.01 =. f ; (m)K' , ,m,  j = 1 , 2  (3.4) 

where g ( m ) s  m andJ ; (m)  is the scaling degree with the boundary condi t ionf , ( l )=  1. 
Hence, for the ( m , j )  equation from (2.4) all time-dependent symmetr) generators are 
linear in t and have the form 

d m 3 ' ) ( t ) =  ~ ~ ~ " ( t ) = T l  k+t[K',,,, T ~ , A ] = ~ ~ ( T ~ , ~ + J ; ( ~ ) ~ K J ~ ~ ~ , ~ )  = 4'ab"'"'(t). (3.5) 

Following the arguments of Eikelder (1986) it is not difficult to prove that for fixed m 
and j all symmetries U, = a:m3"( f ,  U )  are non-Hamiltonian except the first one. Thus 
the set 

{d"~,, d " K ,  4"ab"'.''}:I?x (3.6) 
constitutes the L B  algebra of generalised symmetry generators of the f l o ~  U, = K',,,( U )  
from (2.4). For singular 4-' ,  n 3 0. 

An example of the hierarchy generated by the hereditary recursion operator which 
has K -  master symmetries higher than one is the Burger's hierarchy, but it is not a 
soliton hierarchy and may be linearised by the appropriate Backlund transformation. 
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The reader should note that, although we have differentiated between master 
symmetries 7 of degree 1 and non-Hamiltonian symmetry generators u( t ) ,  they are in 
fact equivalent according to the definition (2.7), as they differ by an  element of K'. 

Now we shall show the alternative method of generating K ' by applying a suitable 
master symmetry instead of a recursion operator. From (3.1) and (3.4) we find 

[KI,, 7 I . n l  = j ; ( m ) K i , m ) + n  (3.7) 

and hence 

where ~ = 7 ~ , ~ , f o r w h i c h g ( m ) + n = m + l  and f ! (m)=f ( l ) f (2 )  . . .  f ( m ) .  Throughthe 
map r, we are looking for all H' master symmetries of degree 0 and 1. Master 
symmetries of degree 0 are just Hamiltonian functionals of K' and the suitable 
covectors = K I K m  = ym are their gradients. O n  the other hand, all covectors 
t Y ' T , , , ,  except the first one O-171,0, are not gradients, i.e. are not closed. This follows 
directly from the fact that a( t )  (3.5) are non-Hamiltonian vector fields. So for each 
set (3.5) there is only one H' master symmetry 61 of degree 1 and one time-dependent 
conserved functional 

Hence, for ( m ,  j) flow from (2.4), the set 

constitutes the non-Abelian L B  algebra of constants of motion. 
by acting with the recursion operator C$ 

on the symmetry generators U, and U,, we would like to find a formula which allows 
us to generate H' recursively, as well. According to (2.6) and the property of the map 
r we find 

As we are able to generate the whole K 

and hence, from (3.4) and  (3.11), 

Thus we have 

(3.12) 

(3.13) 

where C$+ is the adjoint of 4 and generates suitable gradient covectors from the simplest 
ones: yA= @-'U, and y i =  O-IK. 
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3.2. Examples 

As a first example we shall consider the best known soliton equation, i.e. the Korteweg- 
de  Vries equation, and its hierarchy, generated from U, by the recursion hereditary 
operator 4 = D 2 + i a u  +fau,D-' .  In the Kdv case we have K = K i  = 4KA = 4 4 .  All 
time-independent symmetry generators K, = dmu, constitute K L ,  so they are also K L  
master symmetries of degree 0. The simplest master symmetry of degree 1 is T,,,, = 3 / a  
with the commutator (3.4), wheref (m)  = 2m - 1 and g ( m )  = m - 1. The second master 
symmetry is T , . ~  = 2u +xu, and the third 

(3.14) 

is the first non-local one and may be used instead of the 4 operator for generation of 
K L  according to (3.8). 

Next, we look for higher-order master symmetries. As A o =  3 x / a  and [K, Ao] = 
3(u + x u , ) ,  which is not proportional to any T ~ ,  then, according to lemma 1, the Kdv 
hierarchy does not have master symmetries higher than one. For a given K, there 
exists a set (3.5) of time-dependent symmetry generators which are only linear in t 
and are non-local for k 3 2. Moreover, for the flow U, = K,, the set (3.6) constitutes 
the L B  algebra of its generalised symmetry generators. 

Time-independent conserved functionals, according to the general formula (3.13), 
are of the form 

T ~ , ~  = 4 2 ~ l , o  = xK, + 4 u , + ~ a u 2 + f a u l D - ' u  

which allows us to generate H'"" recursively by the dT operator. The only H' master 
symmetry of degree 1 is 6,  = ( 3 / a )  J:x xu dx, connected with T~,,, through the map r. 
So for each set (3.5) there exists one time-dependent conserved functional (3.9) 
connected with the ab"" symmetry generator. The set (3.10) constitutes a non-Abelian 
L B  algebra with respect to the Poisson bracket (2.6) of conserved functionals. 

Our second example is the Sawada-Kotera ( S K )  equation 

(3.16) 5 ' 7  U, = ug +$auu3 S$au ,  U* + r a - u - u ,  

with the recursion hereditary operator 

@ (  U )  = ( D2+ 2au + au, D-')(  D'+;au) D( D*+;UU)D-'. (3.17) 

As K f 4ur  the operator 4 generates two hierarchies (2.4) of Hamiltonian flows with 
the implectic operator 8 = D3 + a(  uD + Du) .  The simplest K master symmetry of 
degree 1 is T , , , = ~ u + x u ,  and the commutation relations for T ~ , "  are given by (3.7) 
with f l ( m ) = 6 m + l ,  f 2 ( m ) = 6 m + 5  and g ( m ) = m .  According to lemma 1, A o =  
2x+:x'u, and there are no master symmetries of higher degree than one. For each 
K',,, from the hierarchy (2.4) the L B  algebras of symmetry generators and conserved 
functionals are presented in (3.6) and (3.10), where from (3.13) 

( 3 . 1 8 ~ )  

(3.18b) 
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Now we consider the Boussinesq equation 

(3.19) 

and its hierarchy (2.4), genrated by the recursion hereditary operator (Weiss 1985) 

4D2+ au + l a u ,  D-' 
D+:au2+ a2u'+ (au,+ a2uul )D- '  Saw + ; a w l  D-I 

(3.20) 

with implectic Noether operator 

e = ( '  D ") 0 '  

The simplest K L  master symmetry of degree 1 is T~,, ,= (&a) and the second is 
T,,, = (3w+x,,!,). The third master symmetry is non-local and equivalent to the recursion 
operator through equation (3.8). The commutation relations are given by (3.7), with 
f l (  m )  = 3m - 2, f2( m )  = 3m - 1 and g( m )  = m - 1. As for the previous hierarchies, the 
Boussinesq hierarchy does not possess master symmetries of degree higher than 1, so 
for the (m, j )  equation from (2.4), time-dependent symmetry generators and conserved 
functionals are given by (3.5) and (3.9) with 6, = (6 /a )  jyx xu dx  and suitable L B  

algebras are given by (3.6) and (3.10) where, according to (3.13), 

2u+.cu 

Let us consider the modified K d v  hierarchy generated from U, by the recursion 
hereditary operator $ = D*+faDuD- 'u  and its inverse (Aiyer 1983), with the implectic 
Noether operator 0 = D. The simplest K' master symmetry of degree 1 is T ~ , ~ =  (xu), 
and its commutator (3.4) has f ( m )  = 2m + 1 and g ( m )  = m. The only symmetry gen- 
erators and constants of motion linear in t are given by (3.5) and (3.9), where 

(3.22) 

As a last example, we consider the non-autonomous flow (2.1), the so-called 

(3.23) 

with recursion operator $ = t (  D2+ 3au + fau ,  D-I) - f x  - AD-' and implectic Noether 
operator 0 = D/t. As was shown by Oevel and Fokas (1984), all flows for which 0 is 
time dependent are non-Hamiltonian, but, nevertheless, (3.23) has an infinite set of 

cylindrical Kdv equation (Maxon and Vicelli 1974) 

U, = U3 + auu, + u / 2 t  
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commuting Hamiltonian symmetry generators and an infinite set of non-commuting 
non-Hamiltonian ones. Both kinds of symmetry generators are time dependent. The 
firs. set 4 ° K "  is generated by 4 from the geometrical symmetry generator KO= 
24r(au ,  - 1/2r) and the second, 4 " w g ,  which is non-Hamiltonian, is generated from 
the generator of space translations wo = U,,. From the commutator relation 

[Kn, wmI=i(2n+ l)Kn+m-I (3.24) 

we find that K ,  = ro,, and w, = T ~ , ~ .  Moreover, we have 

(3.25) 

where y, = ( 4 ' ) " K ' K o  and 8 grad 8 ,  = oo. 

4. Point-particle representation of solitons 

We consider the real Hamiltonian evolution equation (2.1) and its hierarchy (2.4), 
generated by the appropriate recursion hereditary operator. Fuchssteiner ( 198 1) has 
shown that for arbitrary scalars p , ,  . . . , pN, A I , .  . . , A N ,  the set {U E M :  U, = E x l  $,, 
K ( U )  = Z;"=, pIqI, eigenvectors of 4 with eigenvalues A , }  is invariant under the flow 
given by (2.1). In the following we confine our considerations to a discrete spectrum 
of 4, i.e. to pure N-soliton solutions uN of a n  arbitrary equation from the hierarchy. 
As 

, = I  z = 1  , = I  , = I  

we may decompose uN into the sum of terms whose x derivatives are localised 
eigenstates of the recursion operator and call each term U' an  interacting solition. For 
an arbitrary equation from the hierarchy we have 

( U N  1, - K ! n ( U N )  = ( U N ) !  - 4 , ( U N ) x  = 1 ( U :  - A = 0 (4.2) , 
and, in addition, if K ( U )  f 4uX 

One should note that each U' = ~ ' ( z , , .  . . , z N ) ,  where z, = x - U,', is not invariant under 
the flow (2.1) as is their sum, i.e. U: # A :" U:. However, asymptotically uN decomposes 
into the sum of single solitons U,, so that U'- u : ( z , ) ,  and becomes an invariant 
solution, connected with the infinitesimal Lie operator a la r  + U, d/dx. The quantities 
- A ?  and -p,AY are the asymptotic speeds U, of U'. 

The explicit analytical form of interacting solitons U' for various hierarchies, and 
hence their shape deformation during interaction, is a very interesting problem and  
will be considered in a separate paper. Here we are only interested in finding an  
adequate point-particle representation for an  interacting soliton. 

First, we shall pass from N eigenstates $, to the basis of 2N-dimensional phase 
space R" of point particles. From (4.1)-(4.3) we find that each symmetry generator 
K ,  = ro,, is a linear combination of basic symmetry generators 4,: 

f+*S 

N 

1 (4.4) = - A ?  o r  U ( m l  , - --p,AY. K ,  = ro,, = c -U:"$, 
,=I 

As [ K,, K,] = 0, [$,, $,I = 0 for arbitrary i, j .  
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According to equations (3 .13) ,  (4.1) and (4.4), each conserved quantity H“’= 
is a linear combination of basic conserved functionals Si, ,  as 

Obviously, the relation { a;, 6{ ] }  = 0 is fulfilled. 
Let us define a density function h through the relation H =j:-x h dx. Because of 

the boundary conditions for soliton solutions, two densities are equivalent if they differ 
by a total derivative of some function of U. One can find that, for the equations 
considered in this paper as well as for other soliton equations, the 6 ,  master symmetry 
takes the form 

x h , d x =  f 5 x h ; d x =  6 :  h;= 7{oe-14, (4.6) 

where hb is a density of 6;. So for the ( m ,  j )  equation of (2.4), in its L B  algebra of 
constants of motion (3.10), 4, induces 2 N  basic functionals Sb, T,,  N time-independent 
6;  and N time-dependent rr, = 8; + u{”,”f6b, respectively, satisfying the condition 

s Y 

61 = r: , = I  - -x i -  I 

where F = SA, X T , .  
Now we shall compare the above results with those obtained from classical 

mechanics for N non-interacting point particles in one space dimension. In canonical 
variables (p ’ , ,  i l ) ,  the set of constants of motion for such a system contains N time- 
independent constants of motion t, and N constants of motion 6, = p’,( -i, + u , t )  linear 
in t .  Both kinds of constants satisfy the condition (4.7) with the standard implectic 
operator i= (7 0’) and Hamiltonianoftheform fi = Z l  (1/2m,)p’f, where m, are masses, 
p’, = m,u, and I is a N x N unit matrix. Equations of motion for canonical variables are 

p”, = o  4, = a f i / a i ,  = U , .  (4.8) 

In order that the connections between two systems will be more transparent, let us 
define the momentum functional P through the relation 

N N 6  6 
, = l  , = I  6u 6U 

( u ~ ) ~  = 4, = 1 e - p ,  = e- P. (4.9) 

We see that the conservation of P defined in this way is connected with the invariance 
of (2.1) under space translations with a U, generator, as it is for the total momentum 
of particles. Momentum functionals p ,  are related to the basic functionals 6 ;  as follows: 
p ,  = Sb for g ( m )  = m and p ,  = A &  for g ( m )  = m - 1 .  

Now we shall relate the N interacting solitions U‘ of the ( m ,  j )  equation (2.4) with 
N non-interacting point particles through the relation between their constants of 
motion. Let us consider the map p : F + of functionals into their values and introduce 
the canonical basis (p’ , ,  i , ) ,  where p’, = - p , ,  p ,  are the values of p #  functionals and  4, 
are defined as SI = Z l  - cj&. Hence, we find that - p (  p , )  =il and - p ( Z ,  A f ( m ’ - m r r , )  = 
Z, GI, thus connecting conserved functionals with constants of motion of point particles. 
Moreover, for all hierarchies considered in this paper as well as for others, the equations 
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of motion for canonical variables (i,, 6 , )  are of the form (4.8) with fi = f i ( m , J )  and 
U, = U;",". Thus, the map p is a homomorphism of a symplectic manifold (SA, a,, e )  
into a (il, GI, e') one. The properties of point particles obtained in this way will be 
discussed using the example of K d v  flow. 

A one-soliton solution of K d v  hierarchy is 

(4.10) 
12 
a 

U: = - ~f sech2{ K,[(X - Xu) - U:"( f )]} 

where -U:*) = 4Kf is the eigenvalue h i  of the eigenstate 4,. On the other hand, as 0 = 0, 
we find 

and according to (3.15) 

(4.11) 

(4.12) 

Since H'"' are time independent for an arbitrary m, the functionals jTx U '  d x  are time 
independent as well and we may calculate them in the asymptotic limit as 

24 
a 

u ' d x = l i m  u 'dx=-Ki .  I' --3: 

Thus, the Hamiltonian functionals H'"' take the value 

(4.13) 

(4.14) 

One should notice that the above result was obtained by elementary calculations, 
knowing only the simplest master symmetry of degree 1 ,  its scaling degree and the 
integral of the one-soliton solution (4.13). Moreover, the method is independent of 
the one based on the IST and  is relatively simpler. 

Now, we find the particle variables. According to the previous results we have 

(4.15) 

(4.16) 

Equations of motion for such defined N-point particles, representing an N-soliton 
solution of the kth equation from the K d v  hierarchy, are just those from (4.8). The 
mass of the ith particle we find from the relation b, = m)"ujh) which yields 

(4.17) 

We expect that the q dependence of the one-soliton solution has the form U, = 
( 1 2 / a ' ) ~ '  sech'[K(X+ q ( t ) ) ] .  One can confirm it by explicit calculation of the integral 
from (4.16). Thus the particle represents the motion of the centre of the soliton. It is 
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not difficult to verify (4.16) for the N-soliton solution u N ( z I , .  . . , z N ) ,  written in 
Hirota's form (Hirota 1971), with z ,  = x + q, (  t ) .  It means that, asymptotically, as t + *CC 

the centre of U' turns out to be q, = ir T i p ,  with respect to its point-particle trajectory, 
where p, is a soliton shift due to the interaction. 

Our soliton particles are very similar to simple Galilean particles. The main 
difference lies in the masses, which are constants of motion, in contrast to the common 
Galilean particles, where masses are parameters. The first consequence of this fact is 
the different form of the Hamiltonian for both kinds of particles. The second con- 
sequence, and the most important one, is the existence of infinitely many equivalent 
particle representations (p , ,  q, ,  G , ,  m,) with the same Hamiltonian H"' and the same 
equations of motion (4.8). All these representations are connected with one another 
by the appropriate canonical transformations. For example, the well known action- 
angle variables (v,, &)  obtained by the IST method for a = -6, are related to the (i,, 6,) 
ones through the canonical transformation il = $[,v:"', = 9 ~ 7 ~ ' ' .  But only the particles 
represented by (@,, i ! )  variables have a physical meaning, as they move with soliton 
velocities. The above particle representation for the first equation of the K d v  hierarchy 
was found by Alonso (1983), but he found it directly from the IST representation 
through the canonical transformation. 

In  an analogous way, we have found the particle representations for other hier- 
archies considered in this paper. For the SK hierarchy we have A ,  = (ZK,)', p,  = ( 2 ~ , ) ~  
and  hence 

For the Boussinesq hierarchy we have p,  = * 2 ~ , ,  A ,  = (sgn p , ) ; ( 2 ~ , ) ~  and finally 

For both the above hierarchies, the one-soliton solution has the form (4.10). 
Finally, for the M K d v  hierarchy, we have 

A,=2Kf U: = * ( ~ / U ) " ~ K ,  s e c h [ 2 ~ , ( x  - t.:"'t)] 
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and thus 

For the above results, the equations of motion for particle variables are given by 
(4.8) and we find that soliton point particles admit negative energy and mass. 

For the MKdv hierarchy, the canonical transformation connecting (p ' , ,  G,) variables 
with the action-angle variables (v , ,  6,) of IST is as follows for a = 6: p', = 2 exp( -T,), 
s ' = +  4 -$ exP(T0. 

5. Concluding remarks 

In this paper we have been interested in the exceptional non-linear evolution equation 
(2.1) that admits the infinite Lie-Backlund algebra of symmetries and  conserved 
functionals. In the first part we have shown that the L B  algebra of symmetries splits 
into two subalgebras. The Abelian one contains Hamiltonian vector fields which are 
equivalent to master symmetries of degree 0. The second non-Abelian subalgebra 
contains non-Hamiltonian vector fields, equivalent to master symmetries of degree 1. 
The author is interested in finding out whether there exist pure non-linear exceptional 
flows with recursion hereditary operators which are not linearised as the Burgers flow 
for example, and which have additional symmetries not equivalent to master symmetries 
of degree 0 and 1. 

The recursion formula (3.13) for generation of the Hamiltonian functionals links 
the first part with the second, where we have presented the method allowing us to 
connect N Galilean-like point particles with N-soliton solutions of the flows con- 
sidered. Moreover, we have analysed their properties and have compared them with 
those of common non-interacting point particles from classical mechanics. 

Our considerations have been illustrated for the examples of Kdv, MKdv, SK and 
Boussinesq hierarchies. 

References 

Aiyer R N 1983 J .  Phys. A: Math. Gen. 16 255 
Alonso L M 1983 J. Math. Phys. 24 2652 
Eikelder H M M 1986 J. Math. Phys. 27 1404 
Fuchssteiner B 1981 h o g .  Theor. Phys. 65 861 
- 1983 Prog. Theor. Phys. 70 1508 
Fokas A S 1980 J. Math. Phys. 21 1318 
Hirota R 1971 Phys. Rev. Lett. 27 1192 
lbragimov N H and Anderson R L 1977 J. Math. Anal. Appl. 59 145 
Oevel W and Fokas A S 1984 J. Math. Phys. 25 918 
Olover P J 1977 J.  Math. Phys. 18 1212 
Maxon S and Viecelli J 1974 Phys. Nuids 17 1614 
Weiss J 1985 J.  Math. Phys. 26 258 


